AstraZeneca's knowledge graph: Drug discovery is a lot about connections

AstraZeneca is one of the world's most prominent drugmakers whose ever-growing portfolio includes a number of FDA-approved brands such as Crestor, Symbicort, and Nexium. Like all pharma companies, it invests heavily in research and development and spends billions of dollars on clinical trials for all of its experimental drugs before it can bring them to market.

As drug discovery requires a thorough understanding of the complex network of interactions between a drug and its target and its effect on the body, researchers and pharma companies are increasingly turning to knowledge graphs as means to synthesize, integrate, and fully leverage all prior knowledge and streamline the efforts involved in identifying novel drugs and drug targets. Known for its focus on real medical needs and globally integrated approach to R&D, AstraZeneca is one of the companies that have jumped on the bandwagon and embraced knowledge graphs to speed up and strengthen their drug discovery and development.

While there are many ways to organize and aggregate different kinds of structured biomedical data, graphs are perhaps the most common and flexible approach to solving this problem because of their ability to naturally represent the functions, interactions, and other types of relationships (connections) between biological entities. These networks of contextualized scientific data connect all known drugs to their drug targets which go all the way down to the level of individual genes and the proteins that they encode.

AstraZeneca's knowledge graph is known to be a large-scale and continuously updated graph network which integrates both the public biochemical and biomedical data sources as well as the company's internal research data in the areas of oncology, immunology, metabolism, and so on. Assembled in this way, the knowledge graph is then used to make predictions—identify the missing links between its entities which may potentially represent the currently unknown drug–target interactions or relationships between the druggable genes and various medical conditions.

Bottom line

In the context of drug discovery and development, knowledge graphs help organize the wealth of both structured and unstructured data about candidate drugs and their targets.

AstraZeneca is one of the many pharmaceutical companies that are known to have used knowledge graphs to identify promising drug candidates and accelerate their drug discovery efforts.

Related projects

Author and visualize RDF-based knowledge graphs.
RDF, knowledge graphs, data visualization
How Uber's in-house platform powers discovery, exploration, and knowledge at scale.
data management

Made by Anton Vasetenkov.

If you want to say hi, you can reach me on LinkedIn or via email. If you like my work, you can support me by buying me a coffee.